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SUMMARY

Solving numerically hydrodynamical problems of incompressible �uids raises the question of handling
�rst order derivatives (those of pressure) in a closed container and determining its boundary conditions.
A way to avoid the �rst point is to derive a Poisson equation for pressure, although the problem of
taking the right boundary conditions still remains. To remove this problem another formulation of the
problem has been used consisting of projecting the master equations into the space of divergence-free
velocity �elds, so pressure is eliminated from the equations. This technique raises the order of the
di�erential equations and additional boundary conditions may be required. High-order derivatives are
sometimes troublesome, specially in cylindrical coordinates due to the singularity at the origin, so for
these problems a low order formulation is very convenient. We research several pressure boundary
conditions for the primitive variables formulation of thermoconvective problems. In particular we study
the Marangoni instability of an in�nite �uid layer and we show that the numerical results with a
Chebyshev collocation method are highly correspondent to the exact ones. These ideas have been
applied to linear stability analysis of the B�enard–Marangoni (BM) problem in cylindrical geometry and
the results obtained have been very accurate. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: boundary conditions; cylindrical geometry; Marangoni convection; B�enard–Marangoni
convection; collocation method

1. INTRODUCTION

The problem of thermoconvective instabilities in �uid layers heated from below has become
a classical subject in �uid mechanics [1; 2]. It is well known that two di�erent e�ects are
responsible for the onset of motion when the temperature di�erence becomes larger than a
certain threshold: gravity and capillary forces. When both e�ects are taken into account the
problem is called B�enard–Marangoni (BM) convection [3]. At the beginning theoretical
studies considered layers of in�nite horizontal extent without modelling lateral side-wall e�ects
always present in experiments. More recently, experiments have been concerned with con�ned
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containers with di�erent geometries [4–7], and consequently theoretical and numerical
studies have followed the same way [8–14].
Solving numerically hydrodynamical problems of incompressible �uids raises the question of

handling �rst order derivatives for pressure in a closed container and determining its boundary
conditions. In the velocity–pressure formulation [15–17] �rst order derivatives are avoided by
deriving a Poisson equation for pressure [15], although the problem of �nding its boundary
conditions still remains. Dirichlet and Neumann conditions are studied in detail in References
[15] and [17] and good results are obtained with Neumann conditions in Reference [18]. In
this work, sensitivity of the results with respect to arti�cial pressure boundary conditions is
reported. The results we mention refer to rigid boundary conditions in the velocity �eld and
purely hydrodynamical problems, but the issue of thermoconvection with free or Marangoni
conditions for the velocity at the upper surface which we treat here has not been addressed.
To avoid spurious results in the primitive variables formulation, �nite di�erence and �nite
element methods use staggered grids, but this is not necessary with the collocation method
we propose in this article.
In thermoconvection problems pressure is usually avoided. In References [19] and [20]

the method of potentials of velocity is used to eliminate the variable of pressure from the
equations. This technique raises the order of the di�erential equations and additional boundary
conditions may be required. This is particularly troublesome in cylindrical coordinates where
high-order derivatives cause awkward di�culties. The spectral method used in Reference [14]
allows the removal of pressure in the primitive variables formulation, however the collocation
method that we study here is easier to implement.
In this paper we present several pressure boundary conditions that allow us to solve thermo-

convective problems in the primitive variables formulation. This is shown to be very useful
when dealing with cylindrical coordinates. In the second section we perform the linear stability
analysis of the Marangoni problem in an in�nite horizontal �uid layer. Since it has an exact
solution it is used as a test problem to be compared with the numerical results obtained in the
primitive variables formulation and several pressure boundary conditions. We use a Chebyshev
collocation method and sensitivity to the pressure boundary conditions is observed only in the
convergence rate of the method. In the third section we study the BM problem in cylindrical
geometry in the primitive variables formulation with the boundary conditions that provide
better convergence for the test problem. We explain the methodology in detail. We study the
convergence of the numerical results and compare them with the previous bibliography on
the subject. In the fourth section conclusions are presented.

2. TEST PROBLEM

The physical set-up we consider corresponds to an in�nite layer of a �uid with a free top
surface. The domain is:

�= {(x; y; z)∈R3=(x; y)∈R2; 0¡z¡1} (1)

In the vertical direction a temperature gradient is imposed. It is well known that motion sets
in after the vertical temperature gradient has reached a critical value. The only mechanism that
we consider in developing convection is the Marangoni e�ect, which consists of the variation
of the surface tension with temperature. In the reference state there is no motion and heat
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PRESSURE BOUNDARY CONDITIONS 393

propagates by conduction only. To study the linear stability of this state we must solve the
linearized equations for the perturbations from the reference state. As there are no boundary
conditions in the horizontal directions and the basic state is invariant under translations in
those directions, it is possible to take the Fourier modes in those coordinates,

u′= u(z)eikx + cc:; �′= �(z)eikx + cc:; p′=p(z)eikx + cc (2)

The linear problem to be solved is

∇ · u=0 (3)

Pr−1@tu=−∇p+�u (4)

@t�= uz +�� (5)

where u=(ux; uy; uz) is the velocity �eld of the �uid, � is the temperature, p the pressure,
∇=(ikx; iky; @z); �=(@2z −k2); k= |k|; Pr is the Prandtl number which is considered in�nite.
The boundary conditions are:

u|z=0 = 0; �|z=0 =0 (6)

(@zux +Mikx�)|z=1 = 0; (@zuy +Miky�)|z=1 =0 (7)

uz|z=1 = 0; (@z�+ B�)|z=1 =0 (8)

where B is the Biot number and M is the Marangoni number which takes into account the
variation of the surface tension with temperature.

2.1. Formulation without pressure

Classically, pressure is eliminated and the following set of equations and boundary conditions
are obtained,

(D2 − k2)2uz =0 (9)

uz + (D2 − k2)�=0 (10)

uz|z=0 = Duz|z=0 = �|z=0 = 0 (11)

uz|z=1 = (D2uz + k2M�)|z=1 = (D�+ B�)|z=1 = 0 (12)

where D= @=@z. This formulation will be called P1 in the following text. It can be easily
shown that the uz and � solutions are

uz(z) = a1ekz + a2zekz + a3e−kz + a4ze−kz (13)

�(z) = b1ekz + b2e−kz − 1
2
a1zekz

k
+
1
2
a3ze−kz

k
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+ a2

(
1
4
zekz

k2
− 1
4
z2ekz

k

)
+ a4

(
1
4
ze−kz

k2
+
1
4
z2e−kz

k

)
(14)

Introducing them into Equations (9)–(12) we get a linear system of equations for the
unknowns ai; bi. The solvability condition for the system gives the following dependence
of the critical Marangoni number on k,

M =
8kB(�+ 4�k + �2 − 4�2k − 1− �3) + 8k2(−1− �+ 4k�+ �2 + 4k�2 + �3)

−3�2 + 4k3�+ 3�+ 4k3�2 − 1 + �3
where � is a function of k; �(k)= cosh(2k)− sinh(2k).

2.2. Formulation in primitive variables

We consider the primitive variables formulation with two di�erent boundary conditions for
pressure.

1. Continuity equation at the boundaries

(∇ · u)|z=0;1 = 0 (15)

these boundary conditions together with Equations (3)–(5) and boundary conditions
(6)–(8) de�ne the problem P2.

2. Normal component of the Navier–Stokes equations at the top boundary and continuity
equation at the bottom,

(−@zp+�uz)|z=1 = 0 (16)

(∇ · u)|z=0 = 0 (17)

these boundary conditions together with Equations (3)–(5) and boundary conditions
(6)–(8) de�ne the problem P3.

2.3. Numerical method

The exact formulation (P1) together with formulations P2 and P3 are solved numerically
with a Chebyshev collocation method. The eigenfunctions are approximated by Chebyshev
polynomial expansions in the z direction. After changing the z coordinate to transform the
[0; 1] interval into [−1; 1] we use the expansions,

u=
N−1∑
n=0
anTn(z); �=

N−1∑
n=0
bnTn(z); p=

N−1∑
n=0
cnTn(z) (18)

which are introduced into the equations.
For problem P1 the system and boundary conditions are evaluated at the collocation points.

zi=cos
((

i − 1
N − 1 − 1

)
�
)
; i = 1; : : : ; N (19)

In particular, Equation (9) is evaluated at nodes i=3; : : : ; N − 2; Equation (10) at i=2; : : : ;
N−1; the �rst boundary conditions (11) at i=N and the second ones (12) at i=1. We obtain
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Table I. Critical Marangoni number Mc for di�erent orders of expansions and B=10; k =10.

N P1 P2 P3

17 1600.01 1600.01 1600.01
15 1599.99 1599.91 1600.00
13 1599.42 1597.95 1599.66
11 1590.73 1572.61 1595.49
9 1500.53 1382.53 1572.57
7 972.58 776.62 1622.50
0 231.32 201.84 2817.82

Table II. Critical Marangoni number Mc and wave number kc for di�erent values of the Biot number B.

B P1 (numerical) P1 (exact) P2 P3

Mc kc Mc kc Mc kc Mc kc

0.1 83.20 2.04 83.43 2.03 82.93 2.05 83.31 2.03
1 115.69 2.26 116.13 2.25 115.14 2.28 115.92 2.25
10 410.45 2.77 413.44 2.74 406.27 2.82 412.20 2.75

2×N unknowns and 2×N equations. For problems P2 and P3: (3) at the nodes i=2; : : : ;
N −1; (4) at i=2; : : : ; N −1; (5) at i=2; : : : ; N −1; the �rst boundary conditions (6) at i=N ;
(7) and (8) at i=1. We obtain 5×N unknowns and 5× (N − 2)+ 8 equations. To complete
the system we evaluate Equation (15) at i=1; N for problem P2, and Equation (16) at i=1
and (17) at i=N for problem P3. If the coe�cients of the unknowns which form the matrices
of the resulting linear system A and B satisfy det(A − �B)=0, a nontrivial solution of the
linear homogeneous system exists. This condition generates a dispersion relation �≡ �(k;M; B),
equivalent to a direct calculation of the eigenvalues from the system AX = �BX , where X is
the vector which contains the unknowns. When � becomes positive the basic state is unstable.
In the critical situation �=0 with no imaginary part. In this case the dispersion relation can be
written as M ≡M (k; B). We have calculated di�erent critical Marangoni numbers for several
k and B values.

2.4. Convergence of the numerical method

To carry out a test of the convergence of the method we compare the di�erences in the
thresholds of Mc for di�erent orders of expansions. In Table I the thresholds for k=10
and B=10 are shown for seven odd consecutive expansions. The thresholds converge to the
exact value of 1600.01 and the di�erence between consecutive expansions tends to zero as
N increases. Results on convergence improves greatly when k and B are smaller, i.e. for the
critical value of k; kc as Table II shows, for this reason there and in Table III we use seven
polynomials expansions.

2.5. Discussion

As the exact solution is known, it is straightforward to compare the numerical methods. In
Table II we show the critical Marangoni and wave numbers in each formulation for di�erent
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Table III. Critical Marangoni number Mc for di�erent values of the Biot number B and k =10.

B P1 (numerical) P1 (exact) P2 P3

0.1 484.39 808.01 386.80 808.08
1 528.77 880.01 422.23 882.12
10 972.58 1600.01 776.62 1622.50

Biot numbers. We calculate di�erences between each formulation and the exact solution.
The mean relative error for P1 and P2 is 10−2, whereas the same for P3 is 2× 10−3. This
indicates P3 as the best approach. In Table III we show the critical Marangoni number for
k=10 in each formulation and di�erent Biot numbers. Although convergence has not been
reached (see Table I) the result is signi�cant because while the mean relative error for P1
is 0.5 and for P2 it is 0.4, for P3 it is 0.005. We con�rm again that the third formulation
converges better. Di�erences in accuracy between P1 and P3 could be due to the fact that
P1 is a higher order problem. On the other hand P2 diminishes its e�ciency with respect
to P3 because of the boundary conditions considered. Although sensitivity of the numerical
method to pressure boundary conditions has been addressed [18; 19] it seems here that it is
not much more important than other e�ects such as increasing the order of the derivatives
in the equations. Moreover, we have shown that considering appropriate boundary conditions
for pressure leads to very good numerical performance.

3. B �ENARD–MARANGONI IN CYLINDRICAL GEOMETRY

3.1. Formulation of the problem

The physical set-up corresponds to a �uid layer of thickness d �lling a cylinder with radius l.
The surface tension at the upper free surface is temperature dependent and the �uid is heated
from below. Motion sets in when the vertical temperature gradient has exceeded a critical
value.
In the basic state, there is no motion and heat propagates by conduction. In the linear

Boussinesq equations, the �eld can be expanded in the azimuthal variable � in Fourier modes
as follows,

u(t; r; �; z) = um(t; r; z)eim� (20)

�(t; r; �; z) = �m(t; r; z)eim� (21)

p(t; r; �; z) =pm(t; r; z)eim� (22)

where m is the wave number, � and u= uer + ve�+wez are the in�nitesimal temperature and
velocity perturbations with respect to the conductive solution, p is the pressure perturbation,
and (r; �; z) are the polar coordinates. If space, time, velocity, temperature and pressure �elds
are respectively divided by the constants d; d2=�; �=d2; �T and �0��=d2, the equations in
dimensionless form are obtained. Here � is the thermal di�usivity, �0 is the mean density, 	
is the dynamic viscosity (related to the kinematic viscosity through the expression, �= 	=�0)
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and �T is the (conductive) temperature drop between the bottom and the top of the layer.
The linearized general equations for the perturbations of index m are easily shown to be

Pr−1
@u
@t
=−@p

@r
+∇2

m2+1u−
2im
r2
v (23)

Pr−1
@v
@t
=− im

r
p+∇2

m2+1v+
2im
r2
u (24)

Pr−1
@w
@t
=−@p

@z
+∇2

m2w + R� (25)

@�
@t
=w +∇2

m2� (26)

0 =
1
r
@(ru)
@r

+
im
r
v+

@w
@z

(27)

where the subindex m has been cancelled for simplicity. The Rayleigh number is de�ned by
R= �g�Td3=�
, where � is the coe�cient of volume expansion and g is the gravity. The
Prandtl number is given by Pr= �=�. ∇2

n is de�ned by

∇2
n = r

−1@=@r(r@=@r)− nr−2 + @2=@z2

The boundary conditions are the following. The bottom of the box is rigid and assumed to
be perfectly heat conducting so that

u=0; �=0;
1
r
@(ru)
@r

+
im
r
v+

@w
@z
=0 on z=0 (28)

The upper surface of the �uid is assumed to be plane, nondeformable and free where surface
tension e�ects are taken into account. We also assume that at the top, heat is transferred from
the liquid to the ambient gas according to Newton’s law of cooling, which results in a Biot
condition for the temperature perturbations. For pressure the normal projection of the Navier–
Stokes equations into the top plane is considered as a boundary condition. The mathematical
expressions of the boundary conditions at the upper surface are then,

w=0;
@�
@z
+ B�=0;

@u
@z
+M

@�
@r
=0

@v
@z
+M

im
r
�=0 on z=1 (29)

−@p
@z
+∇2

m2w + R�=0 on z=1 (30)

where B is the Biot number and M = ��Td=�0�� is the Marangoni number with � the constant
rate of change of surface tension with temperature.
The lateral side wall is rigid and we will consider it adiabatically insulated. For pressure

we consider the normal projection of the Navier–Stokes equations into this wall as boundary
condition. This is written as follows

u = 0; @�=@r=0 on r= a (31)
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−@p
@r
+∇2

m2+1u−
2im
r2
v = 0 on r= a (32)

where a = l=d is the aspect ratio.
The use of cylindrical coordinates, which are singular at r=0, imposes regularity conditions

on the velocity and temperature �elds [22]. These conditions, which express that the unknown
�elds are single valued at r=0, are mathematically summarized as follows,

@x
@�
=0 (33)

where x is any scalar or vectorial �eld. For the temperature and velocity perturbations, these
conditions are written as

u=
@w
@r
=
@�
@r
=
@p
@r
=0; m=0 (34)

u+ iv=w= �=p=0; m=1 (35)

u= v=w= �=p=0; m �=0;1 (36)

3.2. Numerical method

The numerical technique used is a collocation method which is similar to that of
Reference [23] for rectangular containers. Firstly we change the variables z and r to
transform the intervals [0; 1]× [0; a] into [−1; 1]× [−1; 1] to use the Chebyshev polynomials.
The �elds in Equations (23)–(27), denoted generically by x, are approximated by Chebyshev
expansions,

x=
L−1∑
l=0

M−1∑
n=0

axlnTl(r)Tn(z) (37)

which are introduced into the equations. The resulting expressions are evaluated at the
collocation points (rj; zi) de�ned as follows,

rj = cos
((

j − 1
L− 1 − 1

)
�
)
; j = 1; : : : ; L (38)

zi = cos
((

i − 1
N − 1 − 1

)
�
)
; i = 1; : : : ; N (39)

In the case m¿1 the system and boundary conditions are evaluated at the following collo-
cation points: Equations (23)–(27) at the nodes i=2; : : : ; N − 1; j=2; : : : ; L− 1; the bound-
ary conditions at z=−1 (28) at i=1; j=2; : : : ; L − 1; the boundary conditions at z=1
(29) at i=N; j=2; : : : ; L − 1 and (30) at i=N; j=2; : : : ; L; the boundaries at r=−1 (36)
at i=1; : : : ; N; j=1; �nally the boundaries at r=1 (31) at i=1; : : : ; N; j=L and (32) at
i=1; : : : ; N − 1; j=L. We obtain 5×N ×L equations and 5×N ×L unknowns. For m=1
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Table IV. Critical Marangoni number Mc for di�erent orders of expansions and B=2; a=5.

m 5× 9 7× 11 9× 13 11× 15
m=0 150.705 153.689 154.064 154.062
m=1 148.156 152.558 152.945 152.949
m=2 150.946 153.734 154.154 154.154
m=3 148.526 152.899 153.255 153.256
m=4 149.400 153.542 153.979 153.987

the evaluation has been done at the same nodes, but as there are only four boundary conditions
at r=−1 we have diminished the expansion range of the v �eld by one order,

v=
L−2∑
l=0

N−1∑
n=0
avln Tl(r)Tn(z) (40)

Therefore we get 4×N ×L+N × (L−1) equations with the same amount of unknowns. In the
case m=0 the angular component of the velocity is nulle and Equation (24), together with
the corresponding boundary condition for r in Equations (28)–(36) disappear and therefore
we obtain 4×N ×L equations with the same amount of unknowns. In this case the matrix
associated to the linear algebraic system is singular, due to the fact that pressure is de�ned up
to an additive constant. To �x this constant in the node i=N − 2; j=L the boundary condi-
tion (32) is replaced by a Dirichlet condition for pressure (i.e., p=0 at i=N −2; j=L). The
resulting linear systems have been solved with a standard numerical package. The eigenfunc-
tions and thresholds of the generalized problem are numerically calculated. If the coe�cients
of the unknowns which form the matrices A and C satisfy det(A− �C)=0, a nontrivial solu-
tion of the linear homogeneous system exists. This condition generates a dispersion relation
�= �(R;M; B), equivalent to a direct calculation of the eigenvalues from the system AX =�CX ,
where X is the vector which contains the unknowns. When � becomes positive the basic state
is unstable. In the critical situation Re(�)=0 without imaginary part. In this case the disper-
sion relation can be written as M ≡M (R; B) or R≡R(M;B) and critical Marangoni number
or critical Rayleigh number are obtained directly from the eigenvalue problem.

3.3. Convergence of the numerical method

To carry out a test of the convergence of the method we compare the di�erences in the
critical Marangoni number Mc to di�erent orders of expansions for di�erent values of the
aspect ratio a. In Table IV these thresholds are shown for four consecutive expansions
varying the number of polynomials taken in the z direction (N ) and in the r direction (L).
These results allow us to conclude that N ×L=9× 13 gives very good results for aspect
ratios lower than 5. So, except where otherwise stated, all results given below correspond to
the values N ×L=9× 13.

3.4. Comparison with other theoretical works

Our main goal is to show how a Chebyshev collocation method applied to the primitive
variables formulation of thermoconvective problems with convenient boundary conditions for
pressure produces excellent results.
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Table V. Comparison between our results and those of Dauby et al. [14]. The �rst lines
give the critical Marangoni number when R=0 and for di�erent Biot numbers: the bottom

of the table presents the critical Rayleigh number for M =0.

a=1 a=2 a=4

Mc Mc Mc Mc Mc Mc

B(R=0) (this paper) [14] (this paper) [14] (this paper) [14]

0.01 164.65 164.55 84.640 84.638 82.485 82.486
0.1 168.44 168.34 88.346 88.344 86.263 86.263
1 206.29 206.16 125.011 125.000 120.624 120.630

Rc Rc Rc Rc Rc Rc
(this paper) [14] (this paper) [14] (this paper) [14]

0.01 1419.30 1419.47 712.542 712.667 695.543 695.668
0.1 1426.06 1426.24 726.574 726.704 709.326 709.457
1 1481.89 1482.12 835.897 836.072 799.522 799.735

Table VI. Critical Marangoni numbers Mc for di�erent azimuthal wave number m. The
Rayleigh and Biot numbers are 100 and 0.2, respectively.

a=1 a=2 a=4 a=8

m = 0 163.676 80.878 78.777 76.179
m = 1 108.383 91.254 77.864 76.448
m = 2 158.994 98.407 79.699 76.203
m = 3 255.885 99.955 78.095 76.487

Dauby et al. [14] have considered the comparison between their results and the preceding
ones. For this reason we are focusing on a comparison only with their paper. The correspon-
dence between our work and that of Dauby et al. [14] can be tested by comparing our Tables
V and VI to their Tables II and III. From this comparison we see that the deviations are
less than 0.06 per cent. We have checked that the succession of unstable eigenmodes when
a is increasing in our approach coincides with those of Dauby et al. [14]. In their work they
discuss di�erences obtained with Zaman and Narayanan [13]. As is shown in Figure 1 when a
increases all the critical values converge to the same thresholds and it is harder to distinguish
among them with a numerical method.

4. CONCLUSIONS

We have shown that a Chebyshev collocation method applied to the primitive variables for-
mulation of thermoconvective problems with convenient boundary conditions for pressure
produces excellent results. First, we have solved the Marangoni problem in in�nite geom-
etry with a Chebyshev collocation method, keeping the primitive variables formulation and
testing two sets of boundary conditions for pressure. We have compared these results with
the obtained classically by eliminating pressure. As there is an exact solution to this problem
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Figure 1. Critical Marangoni number Mc as a function of the aspect ratio a. Curves corresponding to
di�erent azimuthal wave numbers m are represented. The Rayleigh and Biot numbers are zero.

it was straightforward to compare the performance of the numerical results in the di�erent
formulations. We prove that the results obtained do not depend on those boundary conditions.
Sensitivity to those boundary conditions is only observed in the convergence of the method.
The best results are obtained in the primitive variables problem, taking as boundary condition
for pressure the projection of Navier–Stokes equations at the top boundary and continuity at
the bottom. Second, considering the boundary condition with the best convergence we have
solved the BM problem in cylindrical geometry. We have compared with previous numer-
ical results and the correspondence is very high. We conclude that the primitive equations
with the appropriate boundary conditions for pressure of these thermoconvective problems are
accurately solved with our collocation method.
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